42 research outputs found

    Individual homogenization in large-scale systems: on the politics of computer and social architectures

    Get PDF
    One determining characteristic of contemporary sociopolitical systems is their power over increasingly large and diverse populations. This raises questions about power relations between heterogeneous individuals and increasingly dominant and homogenizing system objectives. This article crosses epistemic boundaries by integrating computer engineering and a historicalphilosophical approach making the general organization of individuals within large-scale systems and corresponding individual homogenization intelligible. From a versatile archeological-genealogical perspective, an analysis of computer and social architectures is conducted that reinterprets Foucault’s disciplines and political anatomy to establish the notion of politics for a purely technical system. This permits an understanding of system organization as modern technology with application to technical and social systems alike. Connecting to Heidegger’s notions of the enframing (Gestell) and a more primal truth (anfĂ€nglicheren Wahrheit), the recognition of politics in differently developing systems then challenges the immutability of contemporary organization. Following this critique of modernity and within the conceptualization of system organization, Derrida’s democracy to come (Ă  venir) is then reformulated more abstractly as organizations to come. Through the integration of the discussed concepts, the framework of Large-Scale Systems Composed of Homogeneous Individuals (LSSCHI) is proposed, problematizing the relationships between individuals, structure, activity, and power within large-scale systems. The LSSCHI framework highlights the conflict of homogenizing system-level objectives and individual heterogeneity, and outlines power relations and mechanisms of control shared across different social and technical systems

    Hierarchical Composition of Memristive Networks for Real-Time Computing

    Get PDF
    Advances in materials science have led to physical instantiations of self-assembled networks of memristive devices and demonstrations of their computational capability through reservoir computing. Reservoir computing is an approach that takes advantage of collective system dynamics for real-time computing. A dynamical system, called a reservoir, is excited with a time-varying signal and observations of its states are used to reconstruct a desired output signal. However, such a monolithic assembly limits the computational power due to signal interdependency and the resulting correlated readouts. Here, we introduce an approach that hierarchically composes a set of interconnected memristive networks into a larger reservoir. We use signal amplification and restoration to reduce reservoir state correlation, which improves the feature extraction from the input signals. Using the same number of output signals, such a hierarchical composition of heterogeneous small networks outperforms monolithic memristive networks by at least 20% on waveform generation tasks. On the NARMA-10 task, we reduce the error by up to a factor of 2 compared to homogeneous reservoirs with sigmoidal neurons, whereas single memristive networks are unable to produce the correct result. Hierarchical composition is key for solving more complex tasks with such novel nano-scale hardware

    Architectures and Algorithms for Intrinsic Computation with Memristive Devices

    Get PDF
    Neuromorphic engineering is the research field dedicated to the study and design of brain-inspired hardware and software tools. Recent advances in emerging nanoelectronics promote the implementation of synaptic connections based on memristive devices. Their non-volatile modifiable conductance was shown to exhibit the synaptic properties often used in connecting and training neural layers. With their nanoscale size and non-volatile memory property, they promise a next step in designing more area and energy efficient neuromorphic hardware. My research deals with the challenges of harnessing memristive device properties that go beyond the behaviors utilized for synaptic weight storage. Based on devices that exhibit non-linear state changes and volatility, I present novel architectures and algorithms that can harness such features for computation. The crossbar architecture is a dense array of memristive devices placed in-between horizontal and vertical nanowires. The regularity of this structure does not inherently provide the means for nonlinear computation of applied input signals. Introducing a modulation scheme that relies on nonlinear memristive device properties, heterogeneous state patterns of applied spatiotemporal input data can be created within the crossbar. In this setup, the untrained and dynamically changing states of the memristive devices offer a useful platform for information processing. Based on the MNIST data set I\u27ll demonstrate how the temporal aspect of memristive state volatility can be utilized to reduce system size and training complexity for high dimensional input data. With 3 times less neurons and 15 times less synapses to train as compared to other memristor-based implementations, I achieve comparable classification rates of up to 93%. Exploiting dynamic state changes rather than precisely tuned stable states, this approach can tolerate device variation up to 6 times higher than reported levels. Random assemblies of memristive networks are analyzed as a substrate for intrinsic computation in connection with reservoir computing; a computational framework that harnesses observations of inherent dynamics within complex networks. Architectural and device level considerations lead to new levels of task complexity, which random memristive networks are now able to solve. A hierarchical design composed of independent random networks benefits from a diverse set of topologies and achieves prediction errors (NRMSE) on the time-series prediction task NARMA-10 as low as 0.15 as compared to 0.35 for an echo state network. Physically plausible network modeling is performed to investigate the relationship between network dynamics and energy consumption. Generally, increased network activity comes at the cost of exponentially increasing energy consumption due to nonlinear voltage-current characteristics of memristive devices. A trade-off, that allows linear scaling of energy consumption, is provided by the hierarchical approach. Rather than designing individual memristive networks with high switching activity, a collection of less dynamic, but independent networks can provide more diverse network activity per unit of energy. My research extends the possibilities of including emerging nanoelectronics into neuromorphic hardware. It establishes memristive devices beyond storage and motivates future research to further embrace memristive device properties that can be linked to different synaptic functions. Pursuing to exploit the functional diversity of memristive devices will lead to novel architectures and algorithms that study rather than dictate the behavior of such devices, with the benefit of creating robust and efficient neuromorphic hardware

    Macht, Wissen, Teilhabe: Die Henry Arnhold Summer School 2014 diskutierte ĂŒber Museen und Bibliotheken im 21. Jahrhundert

    Get PDF
    Nach der Dresden Summer School 2012 (Von der Vitrine zum Web 2.0, vgl. BIS Jg. 5, H.4, Dez. 2012, S. 220–227) widmete sich auch die zweite von Henry Arnhold (New York) geförderte Summer School im September 2014 der Entwicklung der Sammlungsinstitutionen Bibliothek und Museum. Wieder hatte die TU Dresden im Rahmen des DRESDEN-concept unter der Leitung von Prof. Hans VorlĂ€nder 23 Doktoranden und Postdoktoranden aus fĂŒnf LĂ€ndern eingeladen, um hinter die Kulissen der SLUB Dresden, der Staatlichen Kunstsammlungen Dresden einschließlich der Ethnographischen Sammlungen in Dresden und Leipzig, des Deutschen Hygiene-Museums und des MilitĂ€rhistorischen Museums der Bundeswehr zu schauen

    Prenatal human skin expresses the antimicrobial peptide RNase 7

    Get PDF
    Antimicrobial peptides and proteins (AMPs) play important roles in skin immune defense due to their capacity to inhibit growth of microbes. During intrauterine life, the skin immune system has to acquire the prerequisites to protect the newborn from infection in the hostile environment after birth, which includes the production of skin AMPs. The aim of this study was to analyze the expression of RNase 7, HBD-2/3 and psoriasin during human skin development, thus, providing a deeper insight about the maturity of a fundamental component of the innate immune system. We found low RNase 7 expression levels in the periderm but no expression of HBD-2/3 and psoriasin in first trimester human skin using immunohistochemistry. At the end of the second trimester, RNase 7 is expressed weakly in all epidermal layers with a marked signal in the stratum corneum. HBD-3 and psoriasin are focally expressed while HBD-2 is not detectable. Analysis of supernatants from cultured prenatal skin cells showed that in contrast to adult control, RNase 7 and psoriasin are not found in prenatal skin, suggesting that AMPs are detectable but are not secreted. This study shows the differential expression of AMPs in developing, non-perturbed human prenatal skin. It is conceivable that the combined expression of RNase 7, HBD-3 and psoriasin in fetal skin constitutes a developmental program to exert a broad spectrum of antimicrobial activity to maintain sterility in the amniotic cavity

    Resting-State Connectivity of the Left Frontal Cortex to the Default Mode and Dorsal Attention Network Supports Reserve in Mild Cognitive Impairment

    Get PDF
    Reserve refers to the phenomenon of relatively preserved cognition in disproportion to the extent of neuropathology, e.g., in Alzheimer’s disease. A putative functional neural substrate underlying reserve is global functional connectivity of the left lateral frontal cortex (LFC, Brodmann Area 6/44). Resting-state fMRI-assessed global LFC-connectivity is associated with protective factors (education) and better maintenance of memory in mild cognitive impairment (MCI). Since the LFC is a hub of the fronto-parietal control network that regulates the activity of other networks, the question arises whether LFC-connectivity to specific networks rather than the whole-brain may underlie reserve. We assessed resting-state fMRI in 24 MCI and 16 healthy controls (HC) and in an independent validation sample (23 MCI/32 HC). Seed-based LFC-connectivity to seven major resting-state networks (i.e., fronto-parietal, limbic, dorsal-attention, somatomotor, default-mode, ventral-attention, visual) was computed, reserve was quantified as residualized memory performance after accounting for age and hippocampal atrophy. In both samples of MCI, LFC-activity was anti-correlated with the default-mode network (DMN), but positively correlated with the dorsal-attention network (DAN). Greater education predicted stronger LFC-DMN-connectivity (anti-correlation) and LFC-DAN-connectivity. Stronger LFC-DMN and LFC-DAN-connectivity each predicted higher reserve, consistently in both MCI samples. No associations were detected for LFC-connectivity to other networks. These novel results extend our previous findings on global functional connectivity of the LFC, showing that LFC-connectivity specifically to the DAN and DMN, two core memory networks, enhances reserve in the memory domain in MCI

    The mammalian gene function resource: the International Knockout Mouse Consortium.

    Get PDF
    In 2007, the International Knockout Mouse Consortium (IKMC) made the ambitious promise to generate mutations in virtually every protein-coding gene of the mouse genome in a concerted worldwide action. Now, 5 years later, the IKMC members have developed high-throughput gene trapping and, in particular, gene-targeting pipelines and generated more than 17,400 mutant murine embryonic stem (ES) cell clones and more than 1,700 mutant mouse strains, most of them conditional. A common IKMC web portal (www.knockoutmouse.org) has been established, allowing easy access to this unparalleled biological resource. The IKMC materials considerably enhance functional gene annotation of the mammalian genome and will have a major impact on future biomedical research
    corecore